

"EMSHIP"

Erasmus Mundus Master Course in "Integrated Advanced Ship Design"

Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC

Hydrodynamic Performances Analysis and Design of a Containership Propeller

Daniel Javier Orona Cobos

Master Thesis

Supervisor: Prof. Mihaela Amoraritei, "Dunarea de Jos", University of Galati.

Reviewer: Prof. Lionel Gentaz, "Ecole Centrale de Nantes"

La Spezia, IT. February 2014

OUTLINE

- 1. INTRODUCTION.
- 2. METHODOLOGY.
- 3. PROBLEM DESCRIPTION.
- 4. PROPULSIVE POWER ESTIMATION.
- 5. PROPELLER DESIGN PROCESS.
 - 5.1 FIRST STAGE: THE PRELIMINARY DESIGN PHASE..

2/28

- 5.2 SECOND STAGE: THE DETAILED DESIGN PHASE.
- 5.3 THIRD STAGE: THE ANALYSIS OF THE DESIGN IN OFF-DESIGN CONDITIONS.
- 6. CONCLUSIONS.

Daniel J. Orona Cobos February 2014

E Advar		Université de Liège	الله الله الله الله الله الله الله الله	Universitas Galatiensis n trale a n te s		"Hydı	ו rodynamic P	University of Galati,"Dunar Performances Analysis and E Containership	ea de Jos". Design of a Propeller"
	() () () () () () () () () () () () () (INTROE METHO PROPU PROPU 5.1 FIF 5.2 SE	DUCTION DOLOG LEM D LSIVE F LLER D RST STA COND S	N. BY. DESCRIPTION POWER ESTIMAT DESIGN PROCES AGE: THE PRELIF STAGE: THE DET	ΓΙΟΝ. S. MINARY Ι	DESIGN I ESIGN P	PHASE HASE.		
	6.	5.3 TH CONCL	IRD ST/	AGE: THE ANALY	SIS OF 1	ΓΗΕ DESI	IGN IN O	FF-DESIGN CONDIT	IONS.
Da Fel	niel J. Orona bruary 2014	a Cobos			5/28	"All ou	r dreams c	ome true if we have the c pursue them" (N	ourage to /. Disney)
Adva		Université de Liège		ntrale	foodor	"Hydi	rodynamic P	Jniversity of Galati, "Dunar Performances Analysis and E Containership	ea de Jos". Design of a Propeller"
		lesigned	and ar	nalyzed in off c	lesign c	ondition	s.	000 <i>TEO</i> S) IS	
	MAIN PARTICULARS			CULARS		FORM COEFFICIENTS			
	TEU's	800		No. of Twenty Feet	t Unit	C _M	0.966	Midship coeff	1
	L _{OA}	140.64	[mt]	Length over all		C. □	0.611	Block coeff	1
	L _{WL}	136.8	[mt]	Length weater-line		C.	0.665	Prismatic coeff	1
	L _{PP}	130.0	[mt]	perpendiculars			0.000	Waterplana acoff	-
	В	21.8	[mt]	Breadth		C_{W}	0.833	vvaupiane coem	
	D	9.5	[mt]	Depth					
	Т	7.3	[mt]	Mean Draft					
	•	13311.00	[m^3]	Volumetric displace	ement				
	Δ	13644	[tons]						
	V _S	18.5	[knots]	Service speed		*TI		ntv-foot equivalant u	nit of
	DWT	9500.00	[tons]	Deadweight		11	_0. [wei	cargo capa	acity.
	LGHTWT	3811.00	[tons]	Ligthtweight				3	,
Da Fel	niel J. Orona oruary 2014	ı Cobos			6/28	"All ou	r dreams c	ome true if we have the c pursue them" (V	ourage to /. Disney)

EMship Advanced Design	Université de Liège	g Centrale Nantes	Universitas Galatiensis		Uni "Hydrodynamic Perf	versity of Galati, formances Analys Conta	"Dunarea de Jos". is and Design of a inership Propeller"	
() () () () () () () () () () () () () (INTRODU METHOD PROBLEI PROPUL PROPUL 5.1 FIR 5.2 SEC 5.3 THIF	JCTION. OLOGY. M DESCRI SIVE POW LLER DE ST STAC OND STACE	PTION. ER ESTIMA ESIGN PRO GE: THE P GE: THE DE : THE ANALY	TION. OCESS. PRELIMINAF TAILED DESIG YSIS OF THE I	RY DESIGN F SN PHASE. DESIGN IN OFF	PHASE.	ONDITIONS.	
6.	CONCLU	SIONS.						
Daniel J. Orona C February 2014	Cobos			"/ 11/28	All our dreams com	e true if we ha pursue the	ve the courage to m" (W. Disney)	
University of Galati, "Dunarea de Jos". Hydrodynamic Performances Analysis and Design of a Containership Propeller" Looking for the optimum diameter The marine engine particulars: the brake power [P _B]; the revolution rate at M.C.R. [N];								
	The advance velocity [V_A];							
		[I D], WHEN	$r_D - (r_B)($	$(1_{S})(15\%)$	P _{D 'new'} Q [kWatt] [kN*mt]	מ	_ 5 <u>Q</u>	
					8212 617		$-\sqrt{\rho n^2 K_Q}$	
		P/D	J	Kq	κ _τ	ηο	D [mt]	
	$5 0n^3$	0.5	0.46	0.0074	0.03	0.274		
$\frac{1}{15} = \left \frac{1}{2000} \left \frac{1}{10} \right \right $	$=\frac{1}{2}$	0.6	0.49	0.0105	0.06	0.471		
	ρV_A	0.8	0.53	0.0205	0.10	0.558		
$K_0 \qquad [P_p n^2]$	ה F	0.9	0.60	0.0274	0.172	0.602	5.50	
$\frac{q}{J^5} = \left[\frac{2\pi\rho V_A^5}{2\pi\rho V_A^5}\right]$		1	0.63	0.0357	0.211	0.593	5.20	
		1.1	0.66	0.0452	0.25	0.580		
		1.2	0.69	0.0559	0.29	0.566		
		1.3	0.72	0.0678	0.33	0.552		
		1.4	0.74	0.0808	0.37	0.540		
Daniel J. Orona C February 2014	Cobos			"/ 12/28	All our dreams com	e true if we ha pursue the	ve the courage to m" (W. Disney)	

EMship Advanced Design	Université de Liège Centrale Nantes Université Galati, "Dunarea de Jos". Université de Liège Centrale Containership Propeller"						
(С Ч.	INTRODUCTION						
2.	METHODOLOGY						
3.	PROBLEM DESCRIPTION						
4.	PROPULSIVE POWER ESTIMATION						
5.	PROPELLER DESIGN PROCESS						
	5.1 FIRST STAGE: THE PRELIMINARY DESIGN.						
	5.2 SECOND STAGE: THE DETAILED DESIGN.						
	5.3 THIRD STAGE: THE ANALYSIS OF THE DESIGN IN OFF-DESIGN						
	CONDITIONS.						
6.	CONCLUSIONS						
Desiall							
February 2014	All our dreams come true if we have the courage to 17/28 pursue them" (W. Disney)						
EMship Advanced Design	Université de Lière Centrale						
	Nantes Nantes						
G	eometry is defined						
Th	he hydrodynamic propeller performances (steady/unsteady flow conditions) are vestigated via:						
	 Computational analysis (numerical methods), Experimental tests. 						
0	utput data for uniform flow conditions:						
	(The even water characteristics)						
	 ✓ The open water characteristics; ✓ Computation of pressure distribution on propeller blades operating in 						
	uniform flow and/or by varying circumferentially the fluid flow.						
S	oftware employed:						
- 3	SHIPFLOW						
- 1	FLUENT						
D. I.I.O.							
Daniel J. Orona February 2014	CODOS "All our dreams come true if we have the courage to 18/28 bursue them" (W. Disnev)						

